
Telecommunication Systems 16:3,4, 483–501, 2001
 2001 Kluwer Academic Publishers. Manufactured in The Netherlands.

Aggregating Multicast Demands on Virtual Path Trees

MICHAEL MONTGOMERY ∗ and GUSTAVO DE VECIANA∗∗
Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin,
TX 78712-1084, USA

Abstract. In ATM networks, Virtual Path Connections (VPCs) are not only a device for bundling Virtual
Circuit Connections (VCCs), but they serve as an intermediate resource management layer wherein trade-
offs between cost, complexity, and efficiency are likely to be made on a slower time scale than connection
holding times. In this paper we consider bundling multicast connections on VP trees. In particular, we show
that the aggregation of multicast demands onto large VP trees can be an effective way to reduce capacity
requirements, balance network loads, and reduce the number of VP trees required.

Keywords: aggregation, virtual paths, multicast, ATM

1. Introduction

In ATM networks, Virtual Paths (VPs) that can carry multiple Virtual Circuits (VCs) are
allocated to reduce the complexity of call setup and traffic management at the possible
expense of efficiency. A VP layout consists of a vector of capacities allocated to VPs
that are set up on a subset of network routes on a permanent or semi-permanent basis.
This logical partitioning may be done periodically for the purpose of adaptive resource
allocation due to changing network conditions.

Given a set of multicast demands for a network incorporating multicast-capable
switches, a layout of VP trees could be established using an algorithm such as the one
found in [7]. Setting up a Switched Virtual Circuit (SVC) tree requires significant sig-
naling resources, so even with low multicast demands, creating and using VP trees on
a slower time scale than connection holding times can be worthwhile. The decision to
use SVC or VP trees will ultimately be determined by which resource is the bottleneck:
call processing capacity or bandwidth, as well as possible setup delay constraints and
the future demand for multicast connections. If call processing capacity is limited, the
use of VP trees will be necessary. If bandwidth is scarce, SVC trees will be needed to
use the bandwidth in the most efficient manner possible.

The graph shown in figure 1 exhibits the call processing load in calls per second
(cps) versus the demand, measured in Erlangs, and the mean holding times of connec-

∗M. Montgomery is now with the Center for Information Infrastructure Technology at the Y-12 National
Security Complex, 1099 Commerce Park, Oak Ridge, TN 37830, USA. E-mail: montgomerymc@y12.
doe.gov.∗∗G. de Veciana is supported by National Science Foundation Career Grant NCR-9624230 and by
Southwestern Bell Technology Resources Inc. E-mail: gustavo@ece.utexas.edu.

484 MONTGOMERY AND DE VECIANA

Figure 1. Call processing rates versus demand and mean holding times.

tions.1 As a reference point, the current capabilities of ATM core switches range from
385 cps for the FORE Systems ForeRunner ASX-200BX to 5000 cps for the Ascend
GX 550 where the call processors are implemented in hardware with a separate proces-
sor card per port. Note however that a switch might need to support full accounting
capabilities, such as authentication and the generation of billing records on a per con-
nection basis, therefore it is difficult to extrapolate what throughput might be achieved.
Clearly, if high demand develops for multicast connections with short holding times,
on the order of seconds or minutes, then VP trees would be beneficial in limiting the
amount of signaling and call processing performed in the network. In addition, even if
the average demand can be sustained, call requests arrive as stochastic processes, and the
variability in the rate of requests is likely to lead to periods of focused congestion with
eventual lost calls due to a lack of signaling resources, further strengthening the case for
VP trees.

Another possible concern is that one recent empirical study [10] has shown that
setup delays for SVCs can be significant, especially for multicast, although this should
improve as ATM signaling software matures. In contrast, if an appropriate VP tree
is already established, the setup delay would be minimal since call processing is only
necessary at the VPC end nodes.

Given that we want to establish and use VP trees at least some of the time, in this
paper we argue that due to statistical multiplexing, one may actually save capacity by
aggregating heterogenous multicast demands on the same VP tree. Taking advantage of
this fact, we propose a pre- or post-processing step to the VP multicast layout problem,
which either reduces the complexity of the required optimization or further improves

1 Note that the demand, measured in Erlangs, i.e., average connection requests per mean connection holding
time, is also a rough estimate for the average number of concurrent connections in the system.

AGGREGATING MULTICAST DEMANDS 485

Figure 2. In this example, aggregating the multicast demands provides capacity savings, better load balanc-
ing, and a reduction in VP setup and management loads.

upon obtained solutions. If the VP multicast layout is already determined, then our
procedure could be a post-processing step; if not, it would be a pre-processing step
which is discussed further in section 4. The need for aggregating multicast demands
onto VP or VC trees to avoid VP/VC explosion has previously been suggested in the
context of an IP over ATM environment [3]. Suppose we have a destination set of size
10, where a “destination set” is a candidate group of destinations for which any subset
may be the recipient of a multicast connection from a given source. Then there are 1023
possible non-empty subsets of destinations, and it is likely to be impractical to set up a
separate tree for each subset with nonzero demand.

Consider the situation illustrated in figure 2. There is a single source and two des-
tinations with a demandρ1 for multicast connections to both destinations and a demand
ρ2 for unicast connections to only one destination. Suppose that a capacity of 1 on each
link is able to accommodate the demands at the desired call blocking probability. Fur-
thermore, suppose that if the demands are aggregated, a capacity of 1.4 on each link is
required. In this case, despite the fact that connections of type 2 are needlessly using
both links, we obtain benefits from aggregating the multicast demands in three areas:
the total required capacity is less, the link capacities are more evenly balanced, and one
VP tree, rather than two, is required.

More generally, suppose we are given demandsρ1 andρ2 for multicast connections
requiring unit bandwidth from a common source to destination setsD1 andD2, respec-
tively, whereD2 ⊆ D1.2 Assuming the network switches have the proper multicast
capabilities, we want to establish VP trees for setsD1 andD2. The question is whether
we should establish two separate trees or a single tree to accommodate the demandsρ1

andρ2, i.e., will the benefit of additional multiplexing at the call and cell levels outweigh
the bandwidth wasted by connections for the smaller setD2 using the larger tree? This
situation is illustrated in figure 3.

To answer this question, we first introduce the functionα(ρ,B) which gives the
link capacity needed to accommodate the demandρ at a specified call blocking prob-

2 Of course, one destination set does not have to be a subset of another, but this case leads to the simplest
algorithms and the greatest potential savings. In the more general case, a shared VP tree would have to
reach destinations in the smallest set containing bothD1 andD2.

486 MONTGOMERY AND DE VECIANA

Figure 3. Establishing separate VP trees to accommodate demandsρ1 andρ2 would require a total capacity
of |T1|C1+ |T2|C2. Sharing the larger tree would require capacity|T1|Cs .

ability B. This function may account for statistical multiplexing at the call level, the
burst level, the cell level, or some combination of the three. To determine the capacity
needed for the VPs in each case, we solve forC1 = α(ρ1, B), C2 = α(ρ2, B), and
Cs = α(ρ1 + ρ2, B). For separate VP treesT1 and T2, the total capacity needed is
C = |T1|C1+ |T2|C2, where|T | is the number of links in multicast treeT . When shar-
ing treeT1, the total capacity needed isC ′ = |T1|Cs. If C ′ < C, it would be beneficial
to use a single tree. We can rewrite this condition as

Cs − C1

C2
<
|T2|
|T1| . (1)

It should be noted that there are additional benefits to sharing VP trees besides capacity
savings: e.g.,

• savings in Virtual Path Identifier (VPI) usage – sharing VP trees would reduce the
number of VPs, and hence VPIs, needed for a particular layout,

• a reduction in VP setup and management loads as well as setup delays for a connec-
tion,

• a more even balancing of load across the network – sharing VP trees tends to reduce
the variance in the allocated link capacities, and

• possible savings in the size of buffers needed at the input of each VP tree due to the
increased cell level multiplexing from combining demands.

In section 2, we explore the use of the Erlang B formula to implicitly determine the
functionα, and then further consider a Gaussian traffic model. Given an initial collec-
tion of destination sets, heuristics for finding an aggregation of demands requiring the
least total capacity are proposed and evaluated through simulation in section 3. Finally,
in section 4, we present methods for dealing with unknown topologies, and section 5
concludes the paper with a few additional comments.

AGGREGATING MULTICAST DEMANDS 487

2. Specific examples

Herein, we assume a large population (infinite sources) model where the requests for
multicast connections arrive as Poisson processes.3 In this case, the Erlang B formula
can be used to implicitly determine the functionα and assess the benefits of call level
multiplexing alone [14]. For the above setup, we must solveE(ρ1, C1) = E(ρ2, C2) =
E(ρ1 + ρ2, Cs) = B for C1, C2, andCs, and then test the condition for sharing the
larger tree as expressed in (1). Based on the Erlang function and a blocking probability
of 10−3, figure 4 shows the threshold for capacity savings (maximum value ofρ2 for a
givenρ1) as|T2|/|T1| is varied from 0.5 to 0.9. Below each line, the capacity savings is
greater than zero. Note that, because of the sub-additivity property explained below, the
threshold for|T2|/|T1| = 1 would be a vertical line atρ1 = 0.

For a constant blocking probabilityB, the functionC = g(ρ), defined implicitly
by Erlang’s formula, is concave and sub-additive [14].4 The sub-additivity property, i.e.,
g(ρ1+ ρ2) < g(ρ1)+ g(ρ2), implies that two separate links require more capacity than
a single link with the same total traffic, or in other words, it assesses the benefits of call
level multiplexing. Furthermore, as the desired call blocking probability is decreased,
the multiplexing benefits get better. However, even for a modest blocking probability of
10−3, we can achieve significant capacity savings from aggregation.

Figure 4. For a blocking probability of 10−3, the threshold for capacity savings is plotted for values of
|T2|/|T1| ranging from 0.5 to 0.9. Below each line, the capacity savings is greater than zero.

3 Note that aggregating demands and sharing a tree will increase the population of sources requesting access
to the tree and will serve to strengthen this assumption.

4 For a plot of the inverse Erlang functionC = g(ρ) for various values ofB, see [9].

488 MONTGOMERY AND DE VECIANA

The potential capacity savings are graphed for some different scenarios in fig-
ures 5–9 for a call level blocking probability of 10−3. Figures 5–7 exhibit the poten-
tial savings in capacity when aggregating 2 multicast groups. The savings are given by
100(C − C ′)/C, whereC andC ′ are the total required capacities for separate VP trees
and a shared VP tree, respectively, so the values shown are relative savings percentages.
Figure 5 shows results for the situation shown in figure 3 where|T1| = 5 and|T2| = 4.
The tree sizes are varied in the remaining figures. In figures 8 and 9, there aremmulticast
groups withD1 being the largest destination set, and the savings graphed in the figures
are a comparison between usingm separate VP trees and aggregating allm groups onto
a single treeT1.

Figures 5–7, and 9 show that low values ofρ1, ρ2, . . . ,ρm lead to higher savings.
This is due to the fact that the savings percentage from the sub-additivity of the inverse
Erlang function,C = g(ρ), introduced above is greater for smaller values ofρ. Note
that the low offered load regime is not unrealistic in practice. Indeed, currently the
utilizations achieved on ATM/SONET links are as low as 10–20% due to overheads and
spare capacity reserved for 1+ 1 failure protection [12]. This would mean that a 10
Gbps link would have around 2 Gbps of usable capacity. When this capacity is further
partitioned into a logical VP layout, with say 100 VPs, then each VP would have a
capacity of 20 Mbps. Each VP could, for instance, accommodate 20 video connections
at 1 Mbps, or in other words, the VP capacity would beC = 20 circuits.

Aggregation of larger trees also leads to higher savings, as can be seen in figures 6–
9, because the wasted bandwidth due to a call for a smaller set of destinations using the

Figure 5. The capacity savings shown are for sharing VP treeT1 between 2 multicast groups with offered
loadsρ1 andρ2, fixed tree sizes|T1| = 5 and|T2| = 4, and a blocking probabilityB = 0.001.

AGGREGATING MULTICAST DEMANDS 489

Figure 6. The capacity savings shown are for sharing VP treeT1 between 2 multicast groups with offered
loadsρ1 = ρ2 = ρ, a smaller tree size|T2| = |T1| − 1, and a blocking probabilityB = 0.001.

Figure 7. The capacity savings shown are for sharing VP treeT1 between 2 multicast groups with offered
loadsρ1 = ρ2 = ρ, a larger tree size|T1| = 20, and a blocking probabilityB = 0.001.

490 MONTGOMERY AND DE VECIANA

Figure 8. The capacity savings shown are for sharing VP treeT1 betweenm multicast groups with
destination setsDi ⊆ D1 and tree sizes|Ti | = |T1| − 1 for groupsi = 2, 3, . . . , m, offered loads

ρ1 = ρ2 = · · · = ρm = 50, and a blocking probabilityB = 0.001.

Figure 9. The capacity savings shown are for sharing VP treeT1 betweenm multicast groups (m = |T1|)
with destination setsDi ⊆ D1 and tree sizes|Ti | = |T1| − 1 for groupsi = 2, 3, . . . , m, offered loads

ρ1 = ρ2 = · · · = ρm = ρ, and a blocking probabilityB = 0.001.

AGGREGATING MULTICAST DEMANDS 491

larger tree becomes less relative to the total required bandwidth. The incremental gain in
savings decreases as the tree sizes grow larger because asymptotically, for fixed offered
loads, the savings approaches a constant. For example, in figure 6, the savings for a
givenρ andB is (|T1|C1+ (|T1| −1)C2− |T1|Cs)/(|T1|C1+ (|T1| −1)C2), whereC1 =
C2 = α(ρ,B), Cs = α(2ρ,B), andα is the inverse Erlang function. As|T1| → ∞,
the savings approaches 1− (Cs/(C1+C2)), i.e., the savings that arises from combining
trees of the same size.

From figure 8, we see that aggregation of more and more trees (increasingm) in-
creases savings, but it tapers off. In fact, asm approaches infinity, the savings approaches
a constant for fixed offered loads, fixed tree sizes, and constant blocking probability. For
the Erlang function, if the offered load and capacity are scaled proportionally, we have
that, forρ > C (heavy traffic)

E(mρ,mC)
m→∞−→ 1− C

ρ
(2)

(see [5]). Our scaling is not linear in bothρ andC because as the number of groups
(m) grows, the offered load to the shared tree is scaled linearly but the capacity only
grows enough to keep the blocking probability constant. However, for large enoughm,
we are indeed in the heavy traffic or overloaded regime because the blocking probability
must remain greater than zero and in the critical and underloaded regimes the blocking
probability goes to zero as the capacity grows large [8]. Therefore, lettingα(ρ,B)

represent the inverse Erlang function, we can use (2) to obtain the rough approximation
α(mρ,B) ≈ mρ(1− B) for largem. Lettingρ = ρi = constant, the savings in figure 8
is 1− (|T1|α(mρ,B))/(|T1|α(ρ,B)+ (|T1| −1)(m− 1)α(ρ, B)) which asymptotically,
asm→∞, becomes

1− |T1|ρ(1− B)
(|T1| − 1)α(ρ, B)

. (3)

Now suppose we combine the last two situations and scale bothm and |T1| as in
figure 9. Using the above approximation, asm = |T1| approaches infinity, the savings
for fixedρ = ρi is

1− ρ(1− B)
α(ρ,B)

. (4)

The second term in (4) can be interpreted as the inverse of the bandwidth required per
connection. The bandwidth per connection increases asρ decreases because of less
multiplexing, so for smallerρ, the inverse of the bandwidth per connection is smaller
which leads to higher potential savings. As an example, forB = 0.001 andρ = 10, the
limit in (4) implies a maximum savings of 52.1%; forρ = 100 the maximum savings is
21.9%. These values are quite reasonable in light of figure 9, where form = |T1| = 20
andρ = 10 we have a savings of 40.3%, and forρ = 100 the savings is 14.0%.

Finally, we see from figure 7 that there is a threshold for the smaller tree size below
which it never pays to aggregate two candidate trees.

492 MONTGOMERY AND DE VECIANA

Although the benefits of call level multiplexing are significant, even more capacity
savings can be exhibited by incorporating a burst or cell level model. As a simple ex-
ample, we could model the cell arrival rate of each call by a Gaussian random variable
with meanλ and varianceσ 2. For a bufferless link withN ongoing connections, it can
be shown that the capacity requirement is roughly given by

β(N) = Nλ+ k√Nσ 2, (5)

wherek is a QoS parameter determined by the desired cell loss probability (see, e.g.,
[13]). For instance, a cell loss probability of 10−6 would requirek = 4.75. Letting
α(ρ,B) represent the inverse Erlang function, we need to allocateβ(α(ρ,B)) to satisfy
the call level and cell level QoS requirements for fixed cell loss probability and traffic
parameters (λ, σ 2).5 We will explore the impact of the Gaussian traffic model, which
is amenable to analysis and often arises as a heavy traffic approximation or aggregation
limit, in the simulations of section 3.

3. Heuristics

We now consider the more general problem of having multicast demands from a common
source tom destination sets withDi ⊂ D1 for i = 2,3, . . . , m. Let N = |D1|. The
subsetsDi, i = 2,3, . . . , m, can have from 1 toN − 1 elements. First, we assume that
Dm ⊂ Dm−1 ⊂ · · · ⊂ D1, and later we will drop this assumption.

If each set has a known VP treeTi, the brute force approach to finding a grouping
of sets with the least total required capacity is simply to try all possible combinations and
keep the best combination. Them sets can be divided into 1 tom groups. The number of
possible ways to divide them intok groups is equivalent to finding the number of ways
to placem distinguishable balls intok indistinguishable cells such that no cell is empty.
This is given by a Stirling number [11] of the second kindS(m, k) where

S(m, k) = 1

k!
k∑
i=0

(−1)i
(
k

i

)
(k − i)m. (6)

For each combination, we must find the capacity needed by thek groups, so the com-
putational complexity is proportional to

∑m
k=1 kS(m, k)which grows exponentially. For

example, form = 2,
∑m

k=1 kS(m, k) = 3, for m = 4, it is 37, and form = 8, it is
17,007. Thus, for reasonably largem, heuristics with polynomial complexity would be
preferable to the exponential complexity of the brute force approach.

Although we cannot guarantee optimality, it seems reasonable to try combining
pairs of sets starting from the largest setD1, as suggested by the observation made in
section 2 that aggregation of larger trees leads to higher savings. Furthermore, we expect
to get the most significant savings from combining trees which are close together in

5 Note that for multiplexing multiple traffic classes, we need to allocate for the most stringent QoS require-
ment. See [13] for conditions for which this integration is beneficial.

AGGREGATING MULTICAST DEMANDS 493

size. These ideas lead to the following (clustering) algorithm with complexity O(m).
Pseudocode for all the algorithms in this section can be found in [9].

Algorithm 1. Starting with the largest destination setD1, combine the demands forD1

andD2 into a single demand forD1 if the condition in (1) holds. If successful, try to
combine demands forD1 andD3, and continue on until unsuccessful with candidatesD1

andDi , 26 i 6 m. If i < m, repeat the procedure starting withDi andDi+1, continuing
on until reachingDm.

Note that each combination made would result in capacity savings, so regardless of
the final grouping, the procedure would be worthwhile, but not necessarily optimal. As
a comparison to algorithm 1, we also propose the following algorithm which attempts to
make as many combinations as possible with the current destination set before moving
on, resulting in an algorithm of complexity O(m2).

Algorithm 2. Starting with the largest destination setD1, combine the demands forD1

andD2 into a single demand forD1 if the condition in (1) holds. Next try to combine
demands forD1 andD3, and continue on with candidatesD1 andDi until i = m.
If a successful combination was made, repeat the procedure starting withD1 andD2

(skipping sets which have previously been absorbed). When a pass without a successful
combination has been made, move fromD1 to the next smallest setDj that has not been
aggregated and repeat from the beginning starting withDj andDj+1.

In algorithm 2, we make another pass through the destination sets whenever a suc-
cessful combination is made. The reason for this is that the offered load of the larger set
has been increased and, as can be seen from figure 4, since the threshold is monoton-
ically increasing, the range of offered loads for the smaller tree allowing for capac-
ity savings when sharing has also been increased. Therefore, new combinations could
potentially be made that were not allowed on a previous pass through the destination
sets.

To see how close to optimal algorithms 1 and 2 might be in practice, we ran simula-
tions of algorithms 1 and 2 and the brute force approach using common random numbers.
There werem destination sets withDm ⊂ Dm−1 ⊂ · · · ⊂ D1, and the tree sizes were
1,2, . . . , m, respectively. The offered loads were randomly generated according to a
uniform distribution between 0 andρmax. For each case, the results obtained are 95%
confidence intervals based on independent replications. The call blocking probability
was held constant at 10−3.

From the results shown in table 1, we see that algorithm 1 is consistently better in
total capacity than algorithm 2 and is quite close to the optimal. As expected, the savings
percentage drops off significantly asρmax grows larger, but it improves as the size and
number of the destinations setsm increases. For this scenario, algorithm 1 appears to be
a good compromise between complexity and performance.

494 MONTGOMERY AND DE VECIANA

Table 1
Final capacities and savings percentages for simulations aggregating multicast trees with demands uni-

formly distributed between 0 andρmax and a blocking probability of 10−3.

Total capacity Savings percentage

Original Optimal Alg. 1 Alg. 2 Optimal Alg. 1 Alg. 2

ρmax= 10

m = 2 35± 6 34± 6 34± 6 34± 6 2± 1 2± 1 2± 1
4 110± 17 100± 16 100± 16 100± 16 9± 3 9± 3 9± 3
8 436± 50 359± 47 363± 46 365± 47 18± 2 17± 2 17± 3

12 953± 109 741± 97 747± 95 753± 92 23± 2 22± 2 21± 1

ρmax= 30

m = 2 72± 11 72± 11 72± 11 72± 11 0.5± 0.5 0.5± 0.5 0.5± 0.5
4 232± 39 224± 39 224± 39 224± 39 4± 2 4± 2 4± 2
8 907± 120 829± 119 830± 119 834± 116 9± 2 9± 2 8± 2

12 1986± 264 1747± 251 1769± 256 1783± 255 12± 1 11± 2 10± 2

ρmax= 50

m = 2 105± 16 105± 16 105± 16 105± 16 0.3± 0.3 0.3± 0.3 0.3± 0.3
4 329± 53 322± 53 322± 53 322± 53 2± 1 2± 1 2± 1
8 1327± 186 1252± 187 1257± 186 1258± 186 6± 1 6± 2 5± 2

12 2910± 408 2665± 399 2684± 390 2699± 388 9± 1 8± 1 7± 1

Two additional statistics are shown in table 2: the link capacity standard deviation
and the final number of trees obtained after running the algorithms.6 Unlike the other
statistics, the link capacity standard deviation is topology-dependent, and for our current
experiments we used a topology similar to that shown in figure 10 form = 5. The link
capacity standard deviation gives us a measure of how well the load is balanced across
the links of the network with a standard deviation of zero signifying that all links have
the same capacity. As can be seen in table 2, the load is indeed better balanced after
running our algorithms, with algorithms 1 and 2 both beating the brute force algorithm.
The benefits are most dramatic at low loads and tail off asρmax increases. Also, the
benefits increase as the number of destination setsm increases. Although it is difficult
to quantify, we expect that similar load-balancing benefits might be seen for other more
general topologies. The results for the final number of trees are also quite encouraging.
Once again, the greatest benefits occur for smallerρmax, and they grow asm increases.
The savings in the number of trees translates to reduced VPI usage and a significant
reduction in VP setup and management loads.

We repeated the simulations with the addition of the Gaussian traffic model dis-
cussed at the end of section 2. For each connection, the mean and variance of the cell
arrival rate was given byλ = 1 andσ 2 = 1, respectively. The cell loss probability was
held constant at 10−6 which translates to a value of 4.75 for the QoS parameterk in (5).

6 Note that if we tried to optimize in terms of the link capacity standard deviation or the number of trees
instead of the total required capacity, we would always end up with one tree.

AGGREGATING MULTICAST DEMANDS 495

Table 2
Link capacity standard deviations and final number of trees for simulations aggregating multicast trees with

demands uniformly distributed between 0 andρmax and a call blocking probability of 10−3.

Link capacity standard deviation Final number of trees

Original Optimal Alg. 1 Alg. 2 Optimal Alg. 1 Alg. 2

ρmax= 10

m = 2 7.9± 1.6 6.0± 2.4 6.0± 2.4 6.0± 2.4 1.6± 0.2 1.6± 0.2 1.6± 0.2
4 15.3± 2.8 10.9± 3.8 10.9± 3.8 10.9± 3.8 2.4± 0.5 2.4± 0.5 2.4± 0.5
8 30.7± 3.8 19.0± 3.3 15.4± 5.3 15.2± 5.2 3.4± 0.4 3.2± 0.5 3.2± 0.5

12 46.0± 4.1 25.0± 3.5 21.5± 3.6 21.0± 3.6 3.7± 0.5 3.4± 0.4 3.3± 0.5

ρmax= 30

m = 2 16.3± 3.2 15.9± 3.5 15.9± 3.5 15.9± 3.5 1.9± 0.1 1.9± 0.1 1.9± 0.1
4 33.2± 6.6 27.3± 7.9 26.7± 8.5 26.7± 8.5 2.8± 0.4 2.8± 0.4 2.8± 0.4
8 64.3± 9.1 46.9± 8.5 45.8± 8.0 45.4± 8.0 4.1± 0.4 4.1± 0.4 4.1± 0.4

12 96.4± 9.8 70.9± 9.3 60.8± 9.9 57.8± 9.8 5.0± 0.3 4.3± 0.4 4.2± 0.3

ρmax= 50

m = 2 24.9± 5.0 24.3± 5.3 24.3± 5.3 24.3± 5.3 1.9± 0.1 1.9± 0.1 1.9± 0.1
4 47.9± 9.0 42.6± 9.6 41.4± 10.5 41.4± 10.5 3.1± 0.4 3.0± 0.4 3.0± 0.4
8 94.5± 14.1 79.1± 14.0 74.5± 12.7 74.5± 12.7 4.8± 0.5 4.6± 0.4 4.6± 0.4

12 142± 15.0 113± 12.5 106± 15.4 104± 16.1 6.0± 0.5 5.4± 0.4 5.5± 0.4

Figure 10. One-level tree topology, shown withm = 5, used to determine the link capacity standard
deviation in the simulations.

The results, shown in tables 3 and 4, exhibit the same general trends as the previous
experiments but with a large increase in the capacity savings percentages. There is also
a more significant reduction in the link capacity standard deviation and the final number
of trees. Although the Gaussian model is certainly not the best cell level model, it does
effectively demonstrate the potential benefits if rate multiplexing is taken into account
when aggregating multicast trees.

We shall now drop the assumption thatDm ⊂ Dm−1 ⊂ · · · ⊂ D1. We still keep
the less restrictive assumption thatDi ⊂ D1 for i = 2,3, . . . , m, so withN = |D1|,
the subsetsDi, i = 2,3, . . . , m, can have from 1 toN − 1 elements, and we can form

496 MONTGOMERY AND DE VECIANA

Table 3
Final capacities and savings percentages for simulations aggregating multicast trees with bufferless links,
demands uniformly distributed between 0 andρmax, a call blocking probability of 10−3, a cell loss proba-

bility of 10−6, and a Gaussian cell arrival rate with mean 1 and variance 1.

Total capacity Savings percentage

Original Optimal Alg. 1 Alg. 2 Optimal Alg. 1 Alg. 2

ρmax= 10

m = 2 86± 11 79± 12 79± 12 79± 12 8± 3 8± 3 8± 3
4 265± 33 211± 29 211± 29 211± 29 21± 4 21± 4 21± 4
8 1019± 85 661± 73 664± 75 664± 75 35± 2 35± 3 35± 3

12 2220± 187 1301± 138 1326± 146 1330± 150 42± 2 40± 2 40± 2

ρmax= 30

m = 2 139± 23 135± 23 135± 23 135± 23 3± 2 3± 2 3± 2
4 447± 70 389± 67 389± 67 389± 67 13± 4 13± 4 13± 4
8 1740± 180 1338± 165 1345± 168 1350± 171 23± 2 23± 3 23± 3

12 3800± 395 2703± 326 2744± 330 2771± 340 29± 2 28± 2 27± 2

ρmax= 50

m = 2 187± 31 184± 31 184± 31 184± 31 2± 1 2± 1 2± 1
4 596± 101 536± 97 536± 97 536± 97 10± 3 10± 3 10± 3
8 2333± 263 1903± 247 1929± 250 1936± 252 19± 2 18± 2 17± 3

12 5098± 576 3918± 505 3955± 505 3981± 487 23± 2 23± 2 22± 1

Table 4
Link capacity standard deviations and final number of trees for simulations aggregating multicast trees with
bufferless links, demands uniformly distributed between 0 andρmax, a call blocking probability of 10−3, a

cell loss probability of 10−6, and a Gaussian cell arrival rate with mean 1 and variance 1.

Link capacity standard deviation Final number of trees

Original Optimal Alg. 1 Alg. 2 Optimal Alg. 1 Alg. 2

ρmax= 10

m = 2 19.0± 3.8 3.3± 4.9 3.3± 4.9 3.3± 4.9 1.1± 0.2 1.1± 0.2 1.1± 0.2
4 35.9± 5.5 18.3± 6.7 16.0± 4.9 16.0± 4.9 1.9± 0.2 1.9± 0.2 1.9± 0.2
8 70.8± 6.6 22.9± 8.4 20.5± 5.6 20.4± 5.6 2.2± 0.3 2.1± 0.2 2.1± 0.2

12 106± 7.1 35.7± 6.2 18.5± 5.2 18.0± 5.2 2.7± 0.4 2.3± 0.4 2.3± 0.4

ρmax= 30

m = 2 30.9± 6.1 16.8± 10.4 16.8± 10.4 16.8± 10.4 1.4± 0.2 1.4± 0.2 1.4± 0.2
4 61.3± 11.3 40.7± 16.6 40.7± 16.6 40.7± 16.6 2.3± 0.5 2.3± 0.5 2.3± 0.5
8 122± 13.8 58.7± 19.3 48.0± 17.6 47.4± 17.0 3.0± 0.6 2.7± 0.5 2.7± 0.5

12 183± 14.8 82.5± 13.9 65.1± 11.5 61.0± 11.1 3.1± 0.5 2.9± 0.4 2.8± 0.5

ρmax= 50

m = 2 42.2± 8.2 31.9± 12.9 31.9± 12.9 31.9± 12.9 1.6± 0.2 1.6± 0.2 1.6± 0.2
4 82.2± 16.4 58.9± 22.3 58.9± 22.3 58.9± 22.3 2.4± 0.5 2.4± 0.5 2.4± 0.5
8 164± 20.1 101± 17.3 78.9± 27.3 78.2± 26.7 3.4± 0.4 3.1± 0.4 3.1± 0.4

12 246± 21.6 133± 18.3 111± 17.0 109± 17.0 3.7± 0.5 3.2± 0.5 3.2± 0.5

AGGREGATING MULTICAST DEMANDS 497

equivalence classes based on how many elements are in each set. We can also construct
relationships based on which destination sets are subsets of other destination sets. Ac-
cordingly, we present a modified version of algorithm 1 that proceeds down the hierarchy
by equivalence class.

Algorithm 3. Start with the largest destination setD1 and the equivalence class directly
belowD1 with N − 1 elements per destination set. For eachDi in that equivalence
class (taken in any order), combine the demands forD1 andDi into a single demand
for D1 if the condition in (1) holds. If successful in combining all members in that
equivalence class withD1 (or if the equivalence class is empty), try to combine demands
for D1 and the members of the equivalence class withN−2 elements. Continue on until
reaching an equivalence class in which all members are not combined withD1. Now
repeat the procedure starting with each destination set of that class (in any order) and
restricting combinations to destination sets which are subsets of the current destination
set. Continue on recursively until all destination sets have either been absorbed or have
served as the primary candidate to which other destination sets may be combined.

For completeness, we also define a modified version of algorithm 2.

Algorithm 4. Start with the largest destination setD1 and the equivalence class directly
belowD1 with N − 1 elements per destination set. For eachDi in that equivalence class
(taken in any order), combine the demands forD1 andDi into a single demand forD1

if the condition in (1) holds. Next try to combine demands forD1 and the members of
the equivalence class withN − 2 elements, and continue on until reaching the equiv-
alence class with the smallest number of elements per destination set. If a successful
combination was made, repeat the procedure starting withD1 and the equivalence class
with N − 1 elements per destination set (skipping sets which have previously been ab-
sorbed). When a pass without a successful combination has been made, move fromD1

to the equivalence class with the largest number of elements per destination set that has
members which have not been aggregated, and repeat from the beginning starting with
each destination set of that class (in any order) and restricting combinations to destina-
tion sets which are subsets of the current destination set. Continue on recursively until
all destination sets have either been absorbed or have served as the primary candidate to
which other destination sets may be combined.

To simulate algorithms 3 and 4, we began with a destination set of sizem and
from the 2m − 2 proper subsets (excluding the empty set) chosem− 1 other destination
sets at random at the beginning of each replication. This means that the majority of
the destination sets chosen will have close tom/2 members. As before, the tree sizes
were equal to the destination set sizes, the offered loads were randomly generated ac-
cording to a uniform distribution between 0 andρmax, and the results obtained are 95%
confidence intervals based on independent replications. To compute the link capacity
standard deviation, we used a one-level tree topology, similar to that shown in figure 10,

498 MONTGOMERY AND DE VECIANA

Table 5
Final capacities and savings percentages for simulations aggregating multicast trees with random destina-

tion sets, demands uniformly distributed between 0 andρmax, and a call blocking probability of 10−3.

Total capacity Savings percentage

Original Optimal Alg. 3 Alg. 4 Optimal Alg. 3 Alg. 4

ρmax= 10

m = 4 122± 16 112± 14 112± 14 112± 15 7± 3 7± 3 7± 3
8 457± 46 404± 38 405± 38 406± 37 11± 3 11± 3 11± 3

12 961± 123 844± 96 866± 93 847± 98 12± 3 10± 4 12± 4

ρmax= 30

m = 4 252± 38 246± 37 246± 37 246± 37 3± 2 3± 2 3± 2
8 956± 108 916± 102 918± 102 919± 101 4± 1 4± 1 4± 1

12 2004± 289 1939± 265 1957± 265 1939± 265 3± 1 2± 1 3± 1

ρmax= 50

m = 4 372± 55 367± 55 367± 55 367± 55 1± 1 1± 1 1± 1
8 1381± 161 1351± 157 1352± 157 1353± 156 2± 0.9 2± 0.9 2± 0.9

12 2937± 442 2902± 428 2912± 440 2903± 429 1± 0.7 0.9± 0.5 1± 0.7

Table 6
Final capacities and savings percentages for simulations aggregating multicast trees with random destina-
tion sets, bufferless links, demands uniformly distributed between 0 andρmax, a call blocking probability

of 10−3, a cell loss probability of 10−6, and a Gaussian cell arrival rate with mean 1 and variance 1.

Total capacity Savings percentage

Original Optimal Alg. 3 Alg. 4 Optimal Alg. 3 Alg. 4

ρmax= 10

m = 4 285± 30 226± 21 226± 22 226± 21 20± 4 20± 4 20± 4
8 1061± 91 728± 53 728± 53 728± 53 31± 3 31± 3 31± 3

12 2242± 229 1413± 124 1416± 127 1416± 127 37± 2 37± 3 37± 3

ρmax= 30

m = 4 486± 60 429± 51 432± 51 431± 51 11± 3 11± 3 11± 3
8 1823± 183 1505± 136 1512± 133 1508± 135 17± 3 17± 3 17± 3

12 3836± 456 3050± 319 3100± 335 3050± 319 20± 3 19± 5 20± 3

ρmax= 50

m = 4 651± 86 597± 76 599± 76 598± 76 8± 3 8± 3 8± 3
8 2448± 242 2143± 197 2149± 195 2150± 194 12± 3 12± 3 12± 3

12 5145± 652 4461± 502 4548± 499 4482± 511 13± 3 11± 4 13± 4

but now the destination sets are chosen at random from all possible combinations. We
performed simulations with and without the Gaussian traffic model using the same traffic
parameters and blocking probabilities as before.

The capacity savings results for these experiments are given in tables 5 and 6. See
[9] for the results for the link capacity standard deviation and the final number of trees.

AGGREGATING MULTICAST DEMANDS 499

We do not repeat the results form = 2 as they are the same as before. Algorithm 3 is
close to the optimal in total capacity, but, in contrast to before, it is no longer consistently
better than algorithm 4. The savings percentages have been reduced significantly, but
they are still quite good when the Gaussian traffic model is included. The results for
the link capacity standard deviation and the final number of trees generally exhibit the
same trends as before except that the values for algorithm 3 tend to be a bit higher than
the other two algorithms. Overall, the impact of including the Gaussian traffic model
is more significant than before, and algorithm 3 still appears to be a good compromise
between complexity and performance.

4. Role of topology and pre-processing

In this section, we restrict ourselves to the case where the VP multicast layout has not
yet been determined, and our procedure is a pre-processing step. As in section 1, we
consider the situation with a common source and two destination setsD1 andD2 such
thatD2 ⊆ D1. Suppose that we do not know the actual network topology, but we do
know the distances from the source to all destinations in the larger setD1. The exact
ratio |T2|/|T1| is then unknown, but we can bound it for all possible treesT1 andT2 with
the specified distances to each destination. In the following,h(d) is the number of hops
to destinationd.

Lemma 5. Let u(D) = ∑
d∈D h(d) and l(D) = |D| +∑M−1

j=1 1(j 6= h(d) ∀d ∈ D),
whereM = maxd∈D h(d) and1(·) is the indicator function. Then, for any treesT1 and
T2 satisfying the distance constraintsh(d) ∀d ∈ D1 orD2, respectively, and connecting
a common source to destination setsD1 andD2, respectively, withD2 ⊆ D1, we have

l(D2)

u(D1)
6 |T2|
|T1| 6

u(D2)

l(D1)
. (7)

Proof. To prove the lemma, we show thatl(D) 6 |T | 6 u(D) for any treeT con-
necting a source to destination setD. The largest number of links occurs when the tree
T has disjoint paths from the source to every destination, i.e., the root of the tree has
|D| branches and no links are shared by two or more source-destination paths. There-
fore, |T | 6 ∑

d∈D h(d) = u(D). To establish the lower bound, we assume that no
two destinations are collocated. (If not, simply combine the demands for the collo-
cated destinations into a demand for a single combined destination.) First, suppose that
{h(d) | d ∈ D} = {1,2, . . . ,M}. Then the treeT with the smallest number of links
occurs when the destinations are connected in a straight line. Thus,|T | = M = |D|.
If another destination is added at a duplicate distance 16 j 6 M, then another branch
must be added originating from a node at distancej − 1. If a destination is removed
at distance 16 j < M such that nowj 6∈ {h(d) | d ∈ D}, then a branch can-
not be removed because the tree would become disconnected. Thus, by construction,
|T | > |D| +∑M−1

j=1 1(j 6= h(d) ∀d ∈ D) = l(D). �

500 MONTGOMERY AND DE VECIANA

The bounds in lemma 5 are not very tight. For example, define0(D) = {h(d) |
d ∈ D}, and suppose that0(D2) = {3,5} and0(D1) = {2,3,5}. Then we have
5/106 |T2|/|T1| 6 8/5.

Now consider a similar setup with the additional requirement thatT2 ⊆ T1. Tighter
bounds than before can be obtained as stated in the following lemma. We useD1 − D2

to designate the set of elements inD1 that are not inD2.

Lemma 6. Let u(D) = ∑d∈D h(d) andl(D) = |D| + ∑M−1
j=1 1(j 6= h(d) ∀ d ∈ D),

whereM = maxd∈D h(d) and1(·) is the indicator function. Then, for any treesT1 andT2

satisfying the distance constraintsh(d) ∀ d ∈ D1 orD2, respectively, and connecting a
common source to destination setsD1 andD2, respectively, withD2 ⊆ D1 andT2 ⊆ T1,
we have

l(D2)

l(D2)+ u(D1)− u(D2)
6 |T2|
|T1| 6 min

{
u(D2)

l(D1)
,1

}
. (8)

Proof. SinceT2 ⊆ T1, |T2| 6 |T1|, and so|T2|/|T1| 6 1. From lemma 5, we also
know that|T2|/|T1| 6 u(D2)/ l(D1), thus establishing the upper bound. For the lower
bound, letT12 be a separate tree forD1 − D2. From lemma 5, we know that|T12| 6
u(D1 − D2) = u(D1) − u(D2). SinceT2 ⊆ T1, |T1| 6 |T2| + u(D1) − u(D2). So we
have

|T2|
|T2| + u(D1)− u(D2)

6 |T2|
|T1| . (9)

To find the lower bound over all treesT2, we differentiate the left-hand side of (9) with
respect to|T2|. The derivative,(u(D1) − u(D2))/(|T2| + u(D1) − u(D2))

2, is always
positive becauseu(D1)−u(D2) > 0. Therefore, the left-hand side of (9) is an increasing
function of|T2|. Hence, the smallest possible value of|T2|, which isl(D2), is substituted
for |T2| to establish the lower bound. �

Using lemma 6, the bounds for our previous example are 5/7 6 |T2|/|T1| 6 1, a
significant improvement.

By substituting the lower bound of lemma 5 or preferably lemma 6 for|T2|/|T1|
in (1), we can conservatively decide whether or not to combine the demands forD1

andD2 into a single demand for the larger setD1 without knowing the full network
topology. As confirmed by lemma 6 and figure 4, large destination sets (l(D2) large)
with small differences between them (u(D1)−u(D2) small) will produce a lower bound
for |T2|/|T1| close to 1 (the maximum value) and improve the likelihood of achieving
positive capacity savings by combining the demands. Without knowing the distances to
the relevant destinations, as we have assumed in this section, it is not feasible to bound
|T2|/|T1| and make any decisions as part of a pre-processing step.

AGGREGATING MULTICAST DEMANDS 501

5. Conclusion

In conclusion, we comment on the practicality of the common source assumption for
large numbers of destination sets. Instead of an end system, the source could very well
be a “core” node inside the network from which core-based trees are established for
multicast routing, an architecture being proposed for the Internet [1,2]. A multicast
route would consist of a VPC or SVC from the source to the core node followed by
the established VP tree. Also, the destinations may be gateway nodes instead of end
systems, in which case the VP trees would be entirely contained within the backbone of
the network.

It is also worth noting that after aggregation, it may be desirable to perform trunk
reservation within a VP tree because of the varying revenues generated by incoming
connections [6]. For example, with two types of connections, it is optimal (in terms
of total revenue generated) to reserve a certain amount of capacity for the connections
which generate more revenue [4].

References

[1] A. Ballardie, Core Based Trees (CBT version 2) multicast routing: Protocol specification, RFC 2189
(September 1997).

[2] A. Ballardie, Core Based Trees (CBT) multicast routing architecture, RFC 2201 (September 1997).
[3] M. Borden, E.S. Crawley, B.S. Davie and S.G. Batsell, Integration of real-time services in an IP-ATM

network architecture, RFC 1821 (August 1995).
[4] R.J. Gibbens and F.P. Kelly, Network programming methods for loss networks, IEEE Journal on

Selected Areas in Communications 13(7) (September 1995) 1189–1198.
[5] F.P. Kelly, Blocking probabilities in large circuit-switched networks, Advances in Applied Probability

18(2) (June 1986) 473–505.
[6] F.P. Kelly, Routing and capacity allocation in networks with trunk reservation, Mathematics of Oper-

ations Research 15(4) (November 1990) 771–793.
[7] S.-B. Kim, An optimal VP-based multicast routing in ATM networks, in:Proc. IEEE INFOCOM ’96,

Vol. 3 (1996) pp. 1302–1309.
[8] D. Mitra and J.A. Morrison, Erlang capacity and uniform approximations for shared unbuffered re-

sources, IEEE/ACM Transactions on Networking 2(6) (December 1994) 558–570.
[9] M. Montgomery, Managing complexity in large-scale networks via flow and network aggregation,

Ph.D. thesis, The University of Texas at Austin (August 1998).
[10] D. Niehaus et al., Performance benchmarking of signaling in ATM networks, IEEE Communications

35(8) (August 1997) 134–143.
[11] F.S. Roberts,Applied Combinatorics(Prentice-Hall, Englewood Cliffs, NJ, 1984).
[12] S. Sigarto, Private communication, SBC Technology Resources, Inc. (March 1998).
[13] C.-F. Su and G. de Veciana, On statistical multiplexing, traffic mixes, and VP management, in:Proc.

IEEE INFOCOM ’98, Vol. 2 (1998) pp. 643–650.
[14] R. Syski,Introduction to Congestion Theory in Telephone Systems, Studies in Telecommunication,

Vol. 4, 2nd ed. (Elsevier, Amsterdam, 1986).

